
 
NOVA  
University of Newcastle Research Online 

nova.newcastle.edu.au 
 

 
     Moore, Steven Ian; Ruppert, Michael G.; Harcombe, David M.; Fleming, Andrew J.; 
Yong, Yuen K. (2019) Design and analysis of low-distortion demodulators for modulated 
sensors. IEEE/ASME Transactions on Mechatronics.  
 
Available from: https://dx.doi.org/10.1109/TMECH.2019.2928592 
 
 

 

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works. 
 

Accessed from: http://hdl.handle.net/1959.13/1407319 
 
  
 
 
 
 
 
 

https://dx.doi.org/10.1109/TMECH.2019.2928592
https://nova.newcastle.edu.au/vital/access/manager/Repository?view=null&f0=sm_identifier%3A%22http%3A%2F%2Fhdl.handle.net%2F1959.13%2F1407319%22&sort=null


1

Design and Analysis of Low-Distortion
Demodulators for Modulated Sensors

Steven Ian Moore, Michael G. Ruppert, Member, IEEE, David M. Harcombe, Andrew J. Fleming, Member, IEEE,
Yuen K. Yong, Member, IEEE

Abstract—System-based demodulators in the form of a Kalman
and Lyapunov filter have been demonstrated to significantly
outperform traditional demodulators, such as the lock-in am-
plifier, in bandwidth sensitive applications, for example high-
speed atomic force microscopy. Building on their closed loop
architecture, this article describes a broader class of high-speed
closed-loop demodulators. The generic structure provides greater
flexibility to independently control the bandwidth and sensitivity
to out-of-band frequencies. A linear time-invariant description is
derived which allows the utilization of linear control theory to
design the demodulator. Experimental results on a nanopositioner
with capacitive sensors demonstrate the realization of arbitrary
demodulator dynamics while achieving excellent noise rejection.

I. INTRODUCTION

Demodulation is typically a slow process requiring the
measurement of a signal over many cycles to accurately
extract amplitude, phase, and frequency information. The low
measurement bandwidth is detrimental for applications such
as electrostatic [1] and electrothermal [2] MEMS sensing,
capacitive tomography [3], inductive displacement sensing [4],
[5], precision position control [6] using capacitive sensors
[7], and dynamic mode atomic force microscopy (AFM) [8].
For the latter, the lock-in amplifier [9] has been adopted
as the standard demodulation principle [10]. However, this
method generates frequency components in the output signals
at plus/minus twice the carrier frequency. These frequency
components, denoted image signals in this work, are distor-
tions in the amplitude, phase, and frequency measurements
and must be removed by low pass filtering, thereby limit-
ing the demodulation bandwidth. To alleviate the bandwidth
limitation, a number of high-speed demodulator designs have
been reported [11]–[19]. These demodulation techniques are
surveyed and compared in [10].

In order to reject the image signal without filtering, the
high-bandwidth lock-in amplifier [15] employs an all-pass
filter to phase shift the input signal by 90◦ at the carrier
frequency in order to perform image rejection. In another
method, the numerical integration performed by FIR filters
in the digital lock-in amplifier [14] naturally generates zeros
at the harmonics of the carrier frequency to reject the image
signal [10]. In both cases, the dependency between carrier
frequency and the filter parameters limits the robustness of
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the demodulators for fast changing input signals and the filters
require re-tuning for a change in carrier frequency.

In contrast, system-based demodulators in the form of
a Kalman filter [16], [17] and Lyapunov filter [18], [19]
have demonstrated amplitude and phase estimation at high
bandwidths without the image signal. However, due to the
first order response of the present system-based demodulators,
the resulting frequency responses have a fixed 20 dB per
decade attenuation, thus disturbance frequency components
are not significantly rejected and can distort the measurement
signal. The parameters used to tune the Kalman and Lyapunov
demodulator allow only bandwidth to be specified and not
stop-band attenuation. While the Lyapunov filter architecture
can be generalized to allow for the direct design of higher
order demodulators [20], the exact transformation does not
allow for arbitrary filter responses.

This work proposes a demodulator based on a general
Lyapunov closed-loop architecture, for which an approximate
linear-time-invariant (LTI) description is derived and presented
in Section III and Section IV. This approach allows LTI con-
troller design tools to be employed to define the characteristics
of the demodulator. Furthermore, models are presented that
predict the dynamic response of the proposed demodulators
from the in-phase and quadrature states of the input signal
to the in-phase and quadrature states of the estimate. These
models accurately predict the experimental performance in
Section V. Finally, Section VI demonstrates the use of the
proposed demodulator in a capacitive sensing application.

II. ARCHITECTURE AND DESIGN FORMULA OF THE
PROPOSED DEMODULATOR

The proposed demodulator and the design formula are
initially presented for the benefit of practitioners implementing
this system. The subsequent Sections III and IV present
analysis upon which the design formula is based.

A. The Architecture

The demodulator estimates the in-phase and quadrature
states of an input sinusoidal signal. The input signal is

y(t) = A(t) sin(ωct+ φ(t)) (1)
= yI(t) sin(ωct) + yQ(t) cos(ωct), (2)

where A(t) is the amplitude, φ(t) is the phase, yI is the
in-phase state, yQ is the quadrature state, and ωc is the
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Fig. 1. The schematic of the demodulator.

carrier frequency. The characteristic equations which define
the demodulator are

xI(t) = K sin(ωct)(y(t)− x(t)), (3)
xQ(t) = K cos(ωct)(y(t)− x(t)), (4)
x(t) = xI(t) sin(ωct) + xQ(t) cos(ωct), (5)

where xI and xQ are estimates of the states yI and yQ
respectively, K is an LTI system, and x is an estimate of
the input. Figure 1 shows a block diagram implementation of
the characteristic equations.

This architecture is a derivative of the Kalman filter based
demodulator architecture [17] with two modifications. Firstly,
the Kalman gains are replaced by the signals cos(ωct) and
sin(ωct) (Equations (3) and (4)) as it was demonstrated
empirically that the Kalman gains settle to sinusoidal signals
with a 90◦ phase shift between them [17]. Secondly, the
integrations required for the state update in the Kalman filter
are replaced with the system K.

The demodulator operates as follows: the difference be-
tween the input signal y and its estimate x forms the error
signal e. The error signal is mixed with in-phase and quadra-
ture sinusoids and then filtered by the operator K, resulting in
the estimated states (xI , xQ). Finally, the estimated states are
fed back and mixed with in-phase and quadrature sinusoids
to form the estimate x. With an appropriate choice of K, the
estimated states (xI , xQ) converge towards the input states
(yI , yQ).

From the IQ demodulation, estimates for amplitude, phase,
and frequency can be obtained from

A =
√
x2
I + x2

Q, (6)

φ = tan−1
(

xQ

xI

)
, (7)

∆ω =
dφ

dt
, (8)

where ∆ω is the difference between the frequency of the input
signal and the carrier frequency [21].

B. The Design Formula

The mapping from the input states (yI , yQ) to the estimated
states (xI , xQ) in the Laplace domain can be approximated
by the linear model shown in Figure 2. For linearization, the
demodulation of the error signal is modeled as a gain of 1
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Fig. 2. Block diagram of the linear model of the in-phase half of the
demodulator. The output disturbance do models the image and cross-coupling
signals and linearization errors.

and the mixing-induced image and cross-coupling signals are
treated as output disturbances. In the Laplace domain, the
linear model is

XI(s) = K(s)
2+K(s)YI(s) = T (s)YI(s), (9)

XQ(s) = K(s)
2+K(s)YQ(s) = T (s)YQ(s). (10)

where T (s) is the complementary sensitivity function. T (s)
is the design parameter defining the characteristics of the
demodulator. It must be stable and have a low-pass frequency
response. Then, the transfer function of the system K is
computed from

K(s) = 2T (s)
1−T (s) . (11)

The analysis which justifies the design equation in Equa-
tion (11) is provided in Section IV.

C. Selection of T (s)

The two design specifications for the demodulator are
tracking bandwidth and off-mode rejection as described in
[10]. These specifications are parameterized by the transfer
function T (s). The tracking bandwidth characterizes the time
taken for the estimated states (xI , xQ) to converge to the input
states (yI , yQ) and is specified as the bandwidth of the transfer
function T (s).

The off-mode rejection L(∆ω) characterizes the sensitivity
to other frequency components and is defined as the ratio in
magnitude response at a frequency offset ∆ω from the carrier
frequency with respect to the response at the carrier frequency

L(∆ω) = |T (j(ωc+∆ω))|
|T (jωc)| . (12)

III. LAPLACE DOMAIN DESCRIPTION OF THE
DEMODULATOR

The exact linear-time-varying model is important to under-
stand the nuances of the demodulator’s performance, and to
provide a basis for the LTI approximations used for design.
The analysis in this section derives the transfer functions
that map the input states YI(s) and YQ(s) to the estimated
states XI(s) and XQ(s) in the Laplace domain. A condensed
notation is used in this work to express the frequency shifted
versions of the signals and systems that compose the demod-
ulator. For the system K this notation is

Km ≡ K(s+ jmωc). (13)

This notation is also used for YI(m), YQ(m), XI(m), XQ(m).
Substituting Equations (2) and (5) into Equations (3) and (4)
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and applying the Laplace transform leads to the following
expressions for XI(0) and XQ(0)

XI(0) = 1
4K0

[
−YI(−2) + 2YI(0) − YI(2) − jYQ(−2)

+ jYQ(2) +XI(−2) − 2XI(0) +XI(2)

+jXQ(−2) − jXQ(2)

]
,

(14)

XQ(0) = 1
4K0

[
YQ(−2) + 2YQ(0) + YQ(2) − jYI(−2)

+ jYI(2) −XQ(−2) − 2XQ(0) −XQ(2)

+jXI(−2) − jXI(2)

]
.

(15)

Solving for XI(0) and XQ(0) results in the equations

XI(0) = H0

[
−YI(−2) + 2YI(0) − YI(2) − jYQ(−2)

+ jYQ(2) +XI(−2) +XI(2) + jXQ(−2) −jXQ(2)

]
,

(16)

XQ(0) = H0

[
YQ(−2) + 2YQ(0) + YQ(2) − jYI(−2)

+ jYI(2) −XQ(−2) −XQ(2) + jXI(−2) −jXI(2)

]
,

(17)

where

Hm =
1
4Km

1+
1
2Km

. (18)

To proceed with the analysis, Equations (16) and (17) are
frequency shifted by ±2ωc

XI(−2) = H−2

[
−YI(−4) + 2YI(−2) − YI(0)

− jYQ(−4) + jYQ(0) +XI(−4) +XI(0)

+jXQ(−4) − jXQ(0)

]
,

(19)

XQ(−2) = H−2

[
YQ(−4) + 2YQ(−2) + YQ(0) − jYI(−4)

+ jYI(0) −XQ(−4) −XQ(0)

+jXI(−4) − jXI(0)

]
,

(20)

XI(2) = H2

[
−YI(0) + 2YI(2) − YI(4) − jYQ(0)

+ jYQ(4) +XI(0) +XI(4) + jXQ(0)

−jXQ(4)

]
,

(21)

XQ(2) = H2

[
YQ(0) + 2YQ(2) + YQ(4) − jYI(0)

+ jYI(4) −XQ(0) −XQ(4) + jXI(0)

−jXI(4)

]
.

(22)

Equations (19) to (22) are substituted into Equations (16)
and (17). These substitutions result in the terms XI(−2),
XQ(−2), XI(2), XQ(2), XI(−4), XQ(−4), XI(4), and XQ(4)

being eliminated resulting in the following expressions

XI(0) = H0

[
− YI(−2) + 2YI(0) − YI(2) − jYQ(−2)

+ jYQ(2) + 2H−2

(
XI(0) − jXQ(0) − YI(0)

+ YI(−2) + jYQ(0) + jYQ(−2)

)
+ 2H2

(
XI(0)

+ jXQ(0) − YI(0) + YI(2) − jYQ(0) − jYQ(2)

)] (23)

XQ(0) = H0

[
YQ(−2) + 2YQ(0) + YQ(2) − jYI(−2)

+ jYI(2) + 2H−2

(
XQ(0) + jXI(0) − YQ(0)

− YQ(−2) − jYI(0) + jYI(−2)

)
+ 2H2

(
XQ(0)

− jXI(0) − YQ(0) − YQ(2) + jYI(0) − jYI(2)

)] (24)

Equations (23) and (24) are solved for XI(0) and XQ(0) and
Equation (18) is substituted into the result. This produces the
input-output transfer functions of the demodulator

XI(s) = − K0

2(K0+K−2+2)YI(−2) − K0

2(K0+K2+2)YI(2)

+ K0(2K0+K−2+K2+4)
2(K0+K−2+2)(K0+K2+2)YI(0)

− jK0

2(K0+K−2+2)YQ(−2) + jK0

2(K0+K2+2)YQ(2)

+ jK0(K−2−K2)
2(K0+K−2+2)(K0+K2+2)YQ(s)

(25)

XQ(s) = − jK0

2(K0+K−2+2)YI(−2) + jK0

2(K0+K2+2)YI(2)

− jK0(K−2−K2)
2(K0+K−2+2)(K0+K2+2)YI(0)

+ K0

2(K0+K−2+2)YQ(−2) + K0

2(K0+K2+2)YQ(2)

+ K0(2K0+K−2+K2+4)
2(K0+K−2+2)(K0+K2+2)YQ(s).

(26)

The above equations show how frequency shifted versions of
the input states map to the estimated states. An alternative
arrangement of these equations shows how the inputs map
onto different frequency-shifted estimated states. These rela-
tionships in the Laplace domain are

XI(s+ 2jωc) = −TA(s)YI(s)− jTA(s)YQ(s), (27)
XI(s) = TB(s)YI(s) + TC(s)YQ(s), (28)

XI(s− 2jωc) = −TD(s)YI(s) + jTD(s)YQ(s), (29)
XQ(s+ 2jωc) = −jTA(s)YI(s) + TA(s)YQ(s), (30)

XQ(s) = −TC(s)YI(s) + TB(s)YQ(s), (31)
XQ(s− 2jωc) = jTD(s)YI(s) + TD(s)YQ(s). (32)

Equations (27) and (30) define the image signals resulting from
a frequency up-conversion, and Equations (29) and (32) define
the image signals resulting from a frequency down-conversion.
The up-converting transfer function TA(s), the direct-coupling
transfer function TB(s), the cross-coupling transfer function
TC(s), and the down-converting transfer function TD(s) are

TA(s) = K2

2(K2+K0+2) , (33)

TB(s) = K0(2K0+K−2+K2+4)
2(K0+K−2+2)(K0+K2+2) , (34)

TC(s) = jK0(K−2−K2)
2(K0+K−2+2)(K0+K2+2) , (35)

TD(s) = K−2

2(K−2+K0+2) . (36)

IV. LTI ANALYSIS

This section examines LTI approximations of the exact
linear-time-varying model presented in Section III and the
conditions under which they are valid. The LTI approximation
in Equation (37) is the design formula presented in Section II.

A. LTI Approximations of the Demodulator

The transfer function K0 should have a high gain at low
frequencies and its magnitude response should roll-off as the
frequency increases. A high gain is necessary for the estimated
states to converge towards the input states. The roll-off is
necessary to suppress artifacts that occur due to the mixing in
the demodulator. With these characteristics, there is a region
R1 centered at s = 0 in the s-domain where the high-gain
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Fig. 3. For the high-gain integrator K0 = 5e6
s

(left) shows the magnitude
of K2, K0, and K−2, along with the four regions under which LTI
approximations of TB(s) are derived. (right) shows the discrepancies of
TB(s) from T (s) in each region.

of K0 dominates the shifted transfer functions K2 and K−2,
that is |K0| � |K2| and |K0| � |K−2|. An example showing
the high-gain of K0 and its effect on TB(s) is visualized in
Figure 3. In R1, TB(s) has an LTI approximation

TB(s) ≈ K0

K0+2 = T (s) for s ∈ R1. (37)

The performance of TB(s) in region R1 is important because
the input states (xI , xQ) are expected to be primarily com-
posed of frequency components in R1. While TB(s) could be
specified directly, the computation of the corresponding K0

is difficult. However, making the LTI approximation T (s) the
primary design parameter of the demodulator, the computation
of K0 is trivial.

The example in Figure 3 shows three additional regions in
the s-domain over which the characteristics of TB(s) need to
be considered during design. The region R2, centered at s =
−2jωc is dominated by K2 and is characterized by |K2| �
|K0| and |K0| � |K−2|. With this characterization TB(s) has
an LTI approximation

TB(s) ≈ K0(s)
2(K0(s)+2) = 1

2T (s) for s ∈ R2, (38)

which shows a reduction of 6 dB in the magnitude response
in this region. The same expression is derived for the region
around s = 2jωc. For region R3, for s far from −jωc , 0, and
jωc, the transfer functions K−2, K0, and K2 converge towards
the same value. Here the LTI approximation of TB(s) is

TB(s) ≈ K0

2K0+2 for s ∈ R3. (39)

For large K0, the R3 LTI approximation has 6 dB attenuation
compared to T (s) and approaches T (s) as the K0 becomes
small. LTI approximations in R2 and R3 do not significantly
diverge from T (s).

The final region R4, centered at s = −jωc, is where the
transfer functions K0 and K2 have a similar magnitude. TB(s)
can diverge from the LTI approximation T (s) depending on
K0, as shown in the example in Figure 3 which shows peaking
occurring in TB(s) in R4. When K0 has significant gain at
s = −jωc (and equivalently at s = jωc), TB(s) should be
evaluated at s = −jωc to ensure that it does not excessively
diverge from the nominal transfer function T (s).

Fig. 4. The block diagram of the experimental setup. The input in-phase state
yI(t) is modulated then demodulated resulting in the amplitude estimate A(t),
and estimated states xI(t) and xQ(t). A high pass filter removes DC offsets
introduced in the analog electronics.

B. Suppression of the Cross-Coupling and Image Signals

The in-phase and quadrature (IQ) cross-coupling describes
the transfer of energy from yQ −→ xI and yI −→ xQ with
no frequency shift. Cross-coupling results in an error in the
estimated states. The transfer function describing the cross-
coupling is TC(s) from Equation (35)

TC(s) = jK0(K−2−K2)
2(K0+K−2+2)(K0+K2+2) . (40)

As the magnitude of K0 is increased, the magnitude response
of the cross-coupling transfer function goes to zero, that is,
|TC(s)| −→ 0 as |K0| −→ ∞. Thus, in frequency bands
where K(s) has a high gain, the cross-coupling is suppressed.

The same effect occurs for the image signals which are the
distortions appearing in the output of the demodulator due
to the mixing-induced frequency shifting. The two transfer
functions from Equations (33) and (36) which describe the
mapping from the input states to the image signals are

TA(s) = K2

2(K2+K0+2) , (41)

TD(s) = K−2

2(K−2+K0+2) . (42)

As the magnitude of K0 is increased, the magnitude of the
up- and down-converting transfer functions tend to zero, that
is, |TA(s)| −→ 0 as |K0| −→ ∞, and |TD(s)| −→ 0 as
|K0| −→ ∞. Thus, in frequency bands where K(s) has a
high gain, the image signals are suppressed.

The Lyapunov design [18] and the Kalman filter design [16]
are realized with an integrator

K(s) = ki

s . (43)

This filter has infinite gain at zero frequency, resulting in the
complete suppression of the image signal in the estimated
outputs for constant input states yI and yQ.

V. EXPERIMENTAL RESULTS

The experimental setup is shown in Figure 4. The de-
modulator is implemented on a Xilinx Kintex-7 FPGA and
analog IO is performed with the 4DSP FMC151 analog card
at 122.88 MSPS. A modulator is used to generate the input
signal y(t) using only an in-phase signal yI(t) and zero input
quadrature state. With zero input quadrature state, a non-zero
quadrature estimate is used to identify cross-coupling.
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(a) FRF: 25 kHz Butterworth with varying orders. (b) FRF: 2nd order Butterworth with varying bandwidth.

(c) Step: 25 kHz Butterworth with varying orders. (d) Step: 2nd order Butterworth with varying bandwidth.

Fig. 5. Arbitrary selection of bandwidth and off-mode rejection is demonstrated with the shown set of amplitude frequency response functions and step
responses. The nominal response is that of the specified LTI complementary sensitivity function T (s).

A. Nominal vs Experimental Performance

A set of demodulators are designed to demonstrate the
ability of the proposed design method to obtain arbitrary
bandwidth and off-mode rejection. In all cases the carrier fre-
quency is set to 50 kHz. To demonstrate selection of off-mode
rejection, four demodulators are designed with T (s) specified
as a Butterworth filter with fixed bandwidth of 25 kHz from
1st order to 4th order. To demonstrate selection of bandwidth,
four demodulators are designed with T (s) specified as a 2nd

order Butterworth filter with varying bandwidths of 5 kHz,
10 kHz, 25 kHz, and 50 kHz.

For each of the designed demodulators, the direct-coupling
response from yI(t) to A(t) is characterized by frequency
response functions (FRFs), shown in Figure 5(a-b), and step
responses, shown in Figure 5(c-d). Figure 5(a) demonstrates
that the rate of attenuation in the experimental response
matches the order of T (s). Figure 5(b) shows an accurate
bandwidth specification for the 5 kHz, 10 kHz, and 25 kHz
demodulator. For the 50 kHz demodulator, peaking is observed
at the carrier frequency.

The discrepancy between the nominal and experimental
responses occur for frequency components at the carrier fre-
quency (50 kHz) and at twice the carrier frequency (100 kHz).
The discrepancies between the nominal and experimental
responses is greatest for the lower order and higher bandwidth
T (s). In addition, the image signal is clearly observed in
the transient response of the first-order filter in Figure 5(c).
This indicates that greater attenuation at the carrier frequency
and twice the carrier frequency corresponds to a close match
between the demodulator response and LTI approximation.

Fig. 6. The experimentally measured frequency response function from the
input in-phase state yI to the estimated in-phase xI and quadrature yQ states.
The nominal transfer function is a 2nd order 50 kHz Butterworth filter. The
expected frequency response is overlayed and the expected values at the carrier
frequency are annotated.

B. Estimation of the Direct and Cross-Coupling FRFs

The 2nd order 50 kHz Butterworth demodulator has the
greatest discrepancies between the nominal and experimental
frequency response function. The expected transfer function
from YI(s) to XI(s) is the direct-coupling transfer function
TB(s) from Equation (34). Despite a zero input quadrature
state, a quadrature estimate is expected due to the cross-
coupling transfer function TC(s) from Equation (35). Figure 6
shows the experimentally measured FRFs from yI to the
estimated in-phase xI and quadrature xQ states. The expected
FRFs from the transfer functions in Equations (34) and (35)
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TABLE I
ESTIMATED STATES, AMPLITUDE, AND IMAGE SIGNALS WITH 10 kHz

350mV SINUSOIDAL EXCITATION. THE NOMINAL TRANSFER FUNCTION
IS A 25KHZ, 2ND BUTTERWORTH FILTER.

Expected (V, dB) Experimental (V, dB)

In-phase
Estimate at 10 kHz -15.11 -15.18
Image at 90 kHz -48.50 -47.65
Image at 110 kHz -52.03 -51.04

Quadrature
Estimate at 10 kHz -52.50 -52.40
Image at 90 kHz -48.50 -47.56
Image at 110 kHz -52.03 -51.16

Amplitude
Estimate at 10 kHz -15.11 -15.17
Image at 90 kHz -48.50 -47.54
Image at 110 kHz -52.03 -51.14

match the experimental results at all frequencies except for
the notches present near the carrier frequency.

The presence of these notches occurs during experimental
characterization of the FRF due to the presence of an image
signal. When the frequency of the input tone yI is set to the
carrier frequency ωc, an image signal with frequency ωc is
present in the estimated states. To quantify this effect, the
up and down-converting transfer functions TA(s) and TD(s)
must be considered. The magnitude of the FRFs at the carrier
frequency are denoted (AI , AQ) and are evaluated as

AI = |TB(jωc)− TA(−jωc)|, (44)
AQ = | − TC(jωc)− jTA(−jωc)|. (45)

The expected and experimental AI and AQ at the carrier fre-
quency 50 kHz are noted in Figure 6. Note that the minimum
value of the notches do not lie at 50 kHz. Characterization
of the entire notch requires analysis to include the frequency
responses of the filters within the lock-in amplifier.

C. Estimation of the Image Signals

To compare the expected and experimentally observed im-
age signals, the input state yI to the system in Figure 4
is set to a 10 kHz, 350 mV sinusoid and the demodulator
is designed with a nominal LTI response of a second-order
25 kHz Butterworth filter. The double-sided FFT of the esti-
mated amplitude, and estimated states are shown in Figure 7
in which the estimate and image signals are clearly observed.
The magnitude of these signals are listed in Table I.

At the input frequency ω0, the expected magnitude of both
YI(jω0) and YI(−jω0) are −15.11 dB. The expected values
of the estimates are

XI(jω0) = TB(jω0)YI(jω0), (46)
XQ(jω0) = −TC(jω0)YI(jω0). (47)

The image signal at 90 kHz results from the negative fre-
quency (−ω0) component of the input in-phase state being
up-converted

XI(j(2ωc − ω0)) = −TA(−jω0)YI(−jω0), (48)
XQ(j(2ωc − ω0)) = −jTA(−jω0)YI(−jω0). (49)

Fig. 7. The FFT of the estimated states and amplitude with yI set to a
350mV 10kHz sinusoid. The nominal transfer function is a 25kHz, 2nd
Butterworth filter. The estimate at 10 kHz and the image signals at 90 kHz
and 110 kHz are the dominant components.

(a) (b)

Fig. 8. (a) The lock-in amplifier mixes the input signal y(t) with a sine
and cosine signal. The system F filters the resulting product to suppress the
distortion to produce the in-phase and quadrature estimate (i(t), q(t)). (b)
The capacitive sensor setup.

Fig. 9. The frequency response functions of the three characteristic systems
realized using the lock-in amplifier architecture and proposed demodulator
architecture.
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(a) T1 (250Hz 4th Order) (b) T2 (250Hz 1st Order) (c) T3 (12.5 kHz 1st Order)

Fig. 10. The output of the capacitive sensor (time domain and FFT) while the capacitance is varied at 10Hz. There are six output signals for permutations
of the two demodulator architectures and the three characteristic systems T1, T2, and T3.

TABLE II
THE IMAGE SIGNAL AT 50 kHz IN THE OUTPUT SIGNAL OF THE

CAPACITIVE SENSOR FROM FIGURE 10.

Bandwidth Order Lock-in Amplifier Proposed Demodulator
(Hz) Image Signal (mV) Image Signal (mV)

250 4th 0.00219 0.00135
250 1st 10.3 0.00210
12500 1st 513 0.0775

The image signal at 110 kHz results from the positive fre-
quency (ω0) component of the input in-phase state being up-
converted

XI(j(2ωc + ω0)) = −TA(jω0)YI(jω0), (50)
XQ(j(2ωc + ω0)) = −jTA(jω0)YI(jω0). (51)

The expected and experimental magnitudes for the in-phase
and quadrature signals closely match. This validates the mod-
eling and analysis used in Equations (46) and (51). The
amplitude image signals are evaluated numerically using Equa-
tion (6).

VI. CAPACITIVE SENSING APPLICATION

In this section, a capacitive sensing application for the
proposed demodulator is examined. In addition, experiments
are performed with a lock-in amplifier (Figure 8(a)), which is
considered to be the industry standard for sensor demodula-
tion. Like the proposed demodulator, the lock-in amplifier is
implemented on a Xilinx Kintex-7 FPGA.

The architecture of the capacitive sensor is shown in Fig-
ure 8(b). A capacitive structure is formed from a capacitive
probe (Microsense 2804) and a metal target. The metal target
is fixed to a nanopositioner (PI P-733.3DD) allowing its
displacement x, and thus its capacitance, to be varied. A
charge amplifier with a 0.5 pF reference capacitor C measures
the charge flowing into the capacitive probe Cp. The charge
measurement is demodulated to derive the sensor output. The
characteristic equation of the capacitive sensor is

Vo = Ve
C+Cp

C , (52)

where Vo is the amplitude estimate from the demodulator, and
Ve is the amplitude of the capacitive sensor 25 kHz excitation.

The performance of three demodulator specifications are
considered. The nominal system T1 is a 250 Hz fourth-order
system, T2 is a 250 Hz first-order system, and T3 is a 12.5 kHz
first-order system. The transfer functions of the nominal sys-
tems are

T1(s) = 1
(2.7641× 10−4s+1)4

, (53)

T2(s) = 1
(6.3662× 10−4s+1)

, (54)

T3(s) = 1
(1.2732× 10−5s+1)

. (55)

The first-order responses of T2 and T3 can be realized with
Lyapunov and Kalman filter based demodulators. However,
the Kalman filter implementation is computationally complex
due to the Kalman gain update step which requires a matrix
inversion. Both filters are inherently fixed to first order and
a selected tracking bandwidth is found by empirically tuning
a gain variable. In contrast the proposed method provides a
direct design approach allowing for higher order responses
and selection of bandwidth without tuning.

Compared to the lock-in amplifier, the proposed demodu-
lator is more complex due to its feedback architecture and
additional multipliers, but significantly reduces the distortion
of high bandwidth and low order designs. Figure 9 shows the
experimentally measured FRFs of these systems implemented
with both the lock-in amplifier and proposed demodulator
architecture. The results show that the dynamics of both
demodulator architectures match closely.

With sinusoidal motion induced in the metal target, Fig-
ure 10(a-c) show the output voltage of the capacitive sensor
along with its FFT for all demodulators and Table II lists
the magnitude of the image signal at 50 kHz. The 250 Hz
fourth-order system performs aggressive filtering and there
is no observed difference between demodulator architectures.
However, as the order is reduced and/or the bandwidth is
increased, the magnitude of distortion in the output signal
increases. The distortion is particularly prominent in the lock-
in amplifier architecture. In the 12.5 kHz 1st order system,
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(a)

(b)

Fig. 11. (a) The block diagram of the system in feedback, kI = 7000. (b)
The step responses of the closed loop system using different demodulator
architectures, and characteristic systems.

an image signal at 50 kHz has a magnitude of 513 mV.
This image signal is suppressed in the proposed demodulator
architecture. The harmonic components at 25 kHz and 75 kHz
in both architectures are due to non-linearities in the capac-
itive sensor instrumentation, and harmonics that exist in the
excitation voltage.

The performance benefits of the proposed demodulator
compared to a lock-in amplifier are observed when apply-
ing feedback control using a capacitive sensor, as shown in
Figure 11(a). The closed loop step responses of this system
are shown in Figure 11(b). The fourth order demodulators
heavily suppress the image signal but erode stability margins
due to their additional phase lag compared to the first order
demodulators, as observed with their additional overshoot.
However, with the less aggressive filtering of the low-order
demodulators, the image signal distorts the sensor output when
using the lock-in amplifier architecture. This distortion is
absent using the proposed demodulator.

VII. CONCLUSIONS

This work outlines a demodulator architecture with im-
proved image rejection compared to lock-in amplifiers. The
absence of the image signal permits greater bandwidth and
the use of low-order dynamics. The dynamics of the proposed
linear-time-periodic system are modeled, from which an LTI
approximation is formed which facilitates the use of linear
control design methods to synthesize the demodulator.

The experimental results demonstrate the ability to arbi-
trarily tune both the bandwidth and off-mode rejection of
the demodulator, which cannot be achieved with previously
reported high-speed demodulators, such as the Kalman filter
and Lyapunov filter based demodulators. Experimental results
verify the derived frequency responses and presence of distor-
tion in the estimated states.

The proposed demodulator architecture provides a greater
degree of design flexibility which allows the response to be

tailored to the specific requirements of an application. As such,
this eliminates the demodulation process as a constraint on
system design and performance.
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